
gnuplot

GNUPLOT is a command-driven interactive function plotting program.

For help on any topic, type help followed by the name of the topic.

The new GNUPLOT user should begin by reading the introduction topic (type help
introduction) and about the plot command (type help plot). Additional help can be
obtained from the USENET newsgroup comp.graphics.gnuplot.

copyright
introduction
cd
clear
command line-editing
comment
environment
exit
expressions
help
load
pause
plot
print
pwd
quit
replot
reread
save
set-show
shell
splot
start-up
substitution
user-defined
bugs

copyright

 Copyright (C) 1986 - 1993 Thomas Williams, Colin Kelley

 Permission to use, copy, and distribute this software and its
 documentation for any purpose with or without fee is hereby granted,
 provided that the above copyright notice appear in all copies and
 that both that copyright notice and this permission notice appear
 in supporting documentation.

 Permission to modify the software is granted, but not the right to
 distribute the modified code. Modifications are to be distributed
 as patches to released version.

 This software is provided "as is" without express or implied warranty.

 AUTHORS

 Original Software:
 Thomas Williams, Colin Kelley.

 Gnuplot 2.0 additions:
 Russell Lang, Dave Kotz, John Campbell.

 Gnuplot 3.0 additions:
 Gershon Elber and many others.

 There is a mailing list for gnuplot users. Note, however, that the
 newsgroup
 comp.graphics.gnuplot
 is identical to the mailing list (they
 both carry the same set of messages). We prefer that you read the
 messages through that newsgroup, to subscribing to the mailing list.
 (If you can read that newsgroup, and are already on the mailing list,
 please send a message info-gnuplot-request@dartmouth.edu, asking to be
 removed from the mailing list.)

 The address for mailing to list members is
 info-gnuplot@dartmouth.edu
 and for mailing administrative requests is

 info-gnuplot-request@dartmouth.edu
 The mailing list for bug reports is
 bug-gnuplot@dartmouth.edu
 The list of those interested in beta-test versions is
 info-gnuplot-beta@dartmouth.edu

introduction

GNUPLOT is a command-driven interactive function plotting program. It is case sensitive
(commands and function names written in lowercase are not the same as those written in
CAPS). All command names may be abbreviated, as long as the abbreviation is not
ambiguous. Any number of commands may appear on a line, separated by semicolons (;).
Strings are indicated with quotes.    They may be either single or double quotation marks,
e.g.,

 load "filename"
 cd 'dir'

Any command-line arguments are assumed to be names of files containing GNUPLOT
commands, with the exception of standard X11 arguments, which are processed first. Each
file is loaded with the load command, in the order specified. GNUPLOT exits after the last file
is processed.    When no load files are named, gnuplot enters into an interactive mode.

Commands may extend over several input lines, by ending each line but the last with a
backslash (\). The backslash must be the LAST character on each line. The effect is as if the
backslash and newline were not there. That is, no white space is implied, nor is a comment
terminated. Therefore, commenting out a continued line comments out the entire command
(see comment).

In this documentation, curly braces ({}) denote optional arguments to many commands,
and a vertical bar (|) separates mutually exclusive choices.    GNUPLOT keywords or help
topics are indicated by backquotes or boldface (where available).    Angle brackets (<>) are
used to mark replaceable tokens.

For help on any topic, type help followed by the name of the topic.

The new GNUPLOT user should begin by reading about the plot command (type help plot).

cd

The cd command changes the working directory.

Syntax:
 cd "<directory-name>"

The directory name must be enclosed in quotes.

Examples:
 cd 'subdir'
 cd ".."

clear

The clear command erases the current screen or output device as specified by set output.
This usually generates a formfeed on hardcopy devices. Use set terminal to set the device
type.

command line-editing

The Unix, Atari, VMS, MS-DOS and OS/2 versions of GNUPLOT support command line-editing. 
Also, a history mechanism allows previous commands to be edited, and re-executed. After
the command line has been edited, a newline or carriage return will enter the entire line
regardless of where the cursor is positioned.

The editing commands are as follows:

 `Line-editing`:

 ^B moves back a single character.
 ^F moves forward a single character.
 ^A moves to the beginning of the line.
 ^E moves to the end of the line.
 ^H and DEL delete the previous character.
 ^D deletes the current character.
 ^K deletes from current position to the end of line.
 ^L,^R redraws line in case it gets trashed.
 ^U deletes the entire line.
 ^W deletes the last word.

 `History`:

 ^P moves back through history.
 ^N moves forward through history.

On the IBM PC the use of a TSR program such as DOSEDIT or CED may be desired for line
editing. For such a case GNUPLOT may be compiled with no line editing capability (default
makefile setup). Set READLINE in the makefile and add readline.obj to the link file if
GNUPLOT line editing is to be used for the IBM PC. The following arrow keys may be used on
the IBM PC and Atari versions if readline is used:

 Left Arrow - same as ^B.
 Right Arrow - same as ^F.
 Ctl Left Arrow - same as ^A.
 Ctl Right Arrow - same as ^E.
 Up Arrow - same as ^P.
 Down Arrow - same as ^N.

The Atari version of readline defines some additional key aliases:

 Undo - same as ^L.
 Home - same as ^A.
 Ctrl Home - same as ^E.
 ESC - same as ^U.
 Help - `help' plus return.
 Ctrl Help - `help '.

(The readline function in gnuplot is not the same as the readline used in GNU BASH and GNU
EMACS.    It is somewhat compatible however.)

comment

Comments are supported as follows: a # may appear in most places in a line and GNUPLOT
will ignore the rest of the line. It will not have this effect inside quotes, inside numbers
(including complex numbers), inside command substitutions, etc. In short, it works anywhere
it makes sense to work.

environment

A number of shell environment variables are understood by GNUPLOT. None of these are
required, but may be useful.

If GNUTERM is defined, it is used as the name of the terminal type to be used. This overrides
any terminal type sensed by GNUPLOT on start up, but is itself overridden by the .gnuplot (or
equivalent) start-up file (see start-up), and of course by later explicit changes.

On Unix, AmigaDOS, AtariTOS, MS-DOS and OS/2, GNUHELP may be defined to be the
pathname of the HELP file (gnuplot.gih).

On VMS, the symbol GNUPLOT$HELP should be defined as the name of the help library for
GNUPLOT.

On Unix, HOME is used as the name of a directory to search for a .gnuplot file if none is
found in the current directory. On AmigaDOS, AtariTOS, MS-DOS and OS/2, GNUPLOT is used.
On VMS, SYS$LOGIN: is used. See help start-up.

On Unix, PAGER is used as an output filter for help messages.

On Unix, AtariTOS and AmigaDOS, SHELL is used for the shell command. On MS-DOS and
OS/2, COMSPEC is used for the shell command.

On AmigaDOS, GNUFONT is used for the screen font.    For example: "setenv GNUFONT
sapphire/14".

On MS-DOS, if the BGI interface is used, the variable BGI is used to point to the full path of
the BGI drivers directory. Furthermore SVGA is used to name the Super VGA BGI driver in
800x600 res., and its mode of operation as 'Name.Mode'. E.g., if the Super VGA driver is C:\
TC\BGI\SVGADRV.BGI and mode 3 is used for 800x600 res., then: 'set BGI=C:\TC\BGI' and 'set
SVGA=SVGADRV.3'.

exit

The commands exit and quit and the END-OF-FILE character will exit GNUPLOT. All these
commands will clear the output device (as the clear command does) before exiting.

expressions

In general, any mathematical expression accepted by C, FORTRAN, Pascal, or BASIC is valid.
The precedence of these operators is determined by the specifications of the C programming
language. White space (spaces and tabs) is ignored inside expressions.

Complex constants may be expressed as the {<real>,<imag>}, where <real> and <imag>
must be numerical constants. For example, {3,2} represents 3 + 2i; {0,1} represents i itself.
The curly braces are explicitly required here.
functions
operators

functions

The functions in GNUPLOT are the same as the corresponding functions in the Unix math
library, except that all functions accept integer, real, and complex arguments, unless
otherwise noted. The sgn function is also supported, as in BASIC.
abs
acos
arg
asin
atan
besj0
besj1
besy0
besy1
ceil
cos
cosh
erf
erfc
exp
floor
gamma
ibeta
inverf
igamma
imag
invnorm
int
lgamma
log
log10
norm
rand
real
sgn
sin
sinh
sqrt
tan
tanh

abs

The abs function returns the absolute value of its argument. The returned value is of the
same type as the argument.

For complex arguments, abs(x) is defined as the length of x in the complex plane [i.e.,   
sqrt(real(x)**2 + imag(x)**2)].

acos

The acos function returns the arc cosine (inverse cosine) of its argument. acos returns its
argument in radians.

arg

The arg function returns the phase of a complex number, in radians.

asin

The asin function returns the arc sin (inverse sin) of its argument. asin returns its argument
in radians.

atan

The atan function returns the arc tangent (inverse tangent) of its argument. atan returns its
argument in radians.

besj0

The besj0 function returns the j0th Bessel function of its argument. besj0 expects its
argument to be in radians.

besj1

The besj1 function returns the j1st Bessel function of its argument. besj1 expects its
argument to be in radians.

besy0

The besy0 function returns the y0th Bessel function of its argument. besy0 expects its
argument to be in radians.

besy1

The besy1 function returns the y1st Bessel function of its argument. besy1 expects its
argument to be in radians.

ceil

The ceil function returns the smallest integer that is not less than its argument. For complex
numbers, ceil returns the smallest integer not less than the real part of its argument.

cos

The cos function returns the cosine of its argument. cos expects its argument to be in
radians.

cosh

The cosh function returns the hyperbolic cosine of its argument. cosh expects its argument
to be in radians.

erf

The erf function returns the error function of the real part of its argument. If the argument is
a complex value, the imaginary component is ignored.

erfc

The erfc function returns 1.0 - the error function of the real part of its argument. If the
argument is a complex value, the imaginary component is ignored.

exp

The exp function returns the exponential function of its argument (e raised to the power of
its argument).

floor

The floor function returns the largest integer not greater than its argument. For complex
numbers, floor returns the largest integer not greater than the real part of its argument.

gamma

The gamma function returns the gamma function of the real part of its argument. For
integer n, gamma(n+1) = n! . If the argument is a complex value, the imaginary component
is ignored.

ibeta

The ibeta function returns the incomplete beta function of the real parts of its arguments. p,
q > 0 and x in [0:1] If the arguments are complex, the imaginary components are ignored.

inverf

The inverf function returns the inverse error function of the real part of its argument.

igamma

The igamma function returns the incomplete gamma function of the real parts of its
arguments. a > 0 and x >= 0 If the arguments are complex, the imaginary components are
ignored.

imag

The imag function returns the imaginary part of its argument as a real number.

invnorm

The invnorm function returns the inverse normal distribution function of the real part of its
argument.

int

The int function returns the integer part of its argument, truncated toward zero.

lgamma

The lgamma function returns the natural logarithm of the gamma function of the real part
of its argument. If the argument is a complex value, the imaginary component is ignored.

log

The log function returns the natural logarithm (base e) of its argument.

log10

The log10 function returns the logarithm (base 10) of its argument.

norm

The norm function returns the normal distribution function (or Gaussian) of the real part of
its argument.

rand

The rand function returns a pseudo random number in the interval [0:1] using the real part
of its argument as a seed. If seed < 0 the sequence is (re)initialized. If the argument is a
complex value, the imaginary component is ignored.

real

The real function returns the real part of its argument.

sgn

The sgn function returns 1 if its argument is positive, -1 if its argument is negative, and 0 if
its argument is 0. If the argument is a complex value, the imaginary component is ignored.

sin

The sin function returns the sine of its argument. sin expects its argument to be in radians.

sinh

The sinh function returns the hyperbolic sine of its argument. sinh expects its argument to
be in radians.

sqrt

The sqrt function returns the square root of its argument.

tan

The tan function returns the tangent of its argument. tan expects its argument to be in
radians.

tanh

The tanh function returns the hyperbolic tangent of its argument. tanh expects its
argument to be in radians.

operators

The operators in GNUPLOT are the same as the corresponding operators in the C
programming language, except that all operators accept integer, real, and complex
arguments, unless otherwise noted. The ** operator (exponentiation) is supported, as in
FORTRAN.

Parentheses may be used to change order of evaluation.
binary
unary

binary

The following is a list of all the binary operators and their usages:

 Symbol Example Explanation
 ** a**b exponentiation
 * a*b multiplication
 / a/b division
 % a%b * modulo
 + a+b addition
 - a-b subtraction
 == a==b equality
 != a!=b inequality
 & a&b * bitwise AND
 ^ a^b * bitwise exclusive OR
 | a|b * bitwise inclusive OR
 && a&&b * logical AND
 || a||b * logical OR
 ?: a?b:c * ternary operation

(*) Starred explanations indicate that the operator requires integer arguments.

Logical AND (&&) and OR (||) short-circuit the way they do in C. That is, the second &&
operand is not evaluated if the first is false; the second || operand is not evaluated if the first
is true.

The ternary operator evaluates its first argument (a). If it is true (non-zero) the second
argument (b) is evaluated and returned, otherwise the third argument (c) is evaluated and
returned.

unary

The following is a list of all the unary operators and their usages:

 Symbol Example Explanation
 - -a unary minus
 ~ ~a * one's complement
 ! !a * logical negation
 ! a! * factorial

(*) Starred explanations indicate that the operator requires an integer argument.

The factorial operator returns a real number to allow a greater range.

help

The help command displays on-line help. To specify information on a particular topic use the
syntax:

 help {<topic>}

If <topic> is not specified, a short message is printed about GNUPLOT. After help for the
requested topic is given, help for a subtopic may be requested by typing its name, extending
the help request. After that subtopic has been printed, the request may be extended again,
or simply pressing return goes back one level to the previous topic. Eventually, the GNUPLOT
command line will return.

load

The load command executes each line of the specified input file as if it had been typed in
interactively. Files created by the save command can later be loaded. Any text file
containing valid commands can be created and then executed by the load command. Files
being loaded may themselves contain load commands. See comment for information about
comments in commands.

The load command must be the last command on the line.

Syntax:
 load "<input-file>"

The name of the input file must be enclosed in quotes.

Examples:

 load 'work.gnu'
 load "func.dat"

The load command is performed implicitly on any file names given as arguments to
GNUPLOT. These are loaded in the order specified, and then GNUPLOT exits.

pause

The pause command displays any text associated with the command and then waits a
specified amount of time or until the carriage return is pressed.    pause is especially useful
in conjunction with load files.

Syntax:
 pause <time> {"<string>"}

<time> may be any integer constant or expression. Choosing -1 will wait until a carriage
return is hit, zero (0) won't pause at all, and a positive integer will wait the specified number
of seconds.

Note: Since pause is not part of the plot it may interact with different device drivers
differently (depending upon how text and graphics are mixed).

Examples:
 pause -1 # Wait until a carriage return is hit
 pause 3 # Wait three seconds
 pause -1 "Hit return to continue"
 pause 10 "Isn't this pretty? It's a cubic-spline."

plot

plot and splot are the primary commands of the program. They plot functions and data in
many, many ways. plot is used to plot 2-d functions and data, while splot plots 3-d surfaces
and data.

Syntax:

 plot {ranges} {<function> | {"<datafile>" {using ...}}}
 {title} {style} {, <function> {title} {style}...}

 splot {ranges} {<function> | {"<datafile>" {index i} {using ...}}}
 {title} {style} {, <function> {title} {style}...}

where either a <function> or the name of a data file enclosed in quotes is supplied.    A
function is a mathematical expression, or a pair (plot) or triple (splot) of mathematical
expressions in the case of parametric functions.    User-defined functions and variables may
also be defined here.

plot and splot commands can be as simple as

 plot sin(x)

and

 splot x * y

or as complex as (!)

 plot [t=1:10] [-pi:pi*2] tan(t), "data.1" using 2:3 with lines,
 t**2 with points

data-file
errorbars
parametric
ranges
index
style
title

data-file

Discrete data contained in a file can be displayed by specifying the name of the data file
(enclosed in quotes) on the plot or splot command line. Data files should contain one data
point per line. Lines beginning with # (or ! on VMS) will be treated as comments and
ignored. For plots, each data point represents an (x,y) pair. For splots, each point is an (x,y,z)
triple. For plots with error bars (see plot errorbars), each data point is either (x,y,ydelta) or
(x,y,ylow,yhigh). In all cases, the numbers on each line of a data file must be separated by
blank space. This blank space divides each line into columns.

For plots the x value may be omitted, and for splots the x and y values may be omitted. In
either case the omitted values are assigned the current coordinate number. Coordinate
numbers start at 0 and are incremented for each data point read.

To specify other formats, see plot datafile using.

In the plot command, blank lines in the data file cause a break in the plot. There will be no
line drawn between the preceding and following points if the plot style is lines or linespoints
(see plot style). This does not change the plot style, as would plotting the data as separate
curves.

This example compares the data in the file population.dat to a theoretical curve:

 pop(x) = 103*exp((1965-x)/10)
 plot [1960:1990] 'population.dat', pop(x)

The file population.dat might contain:

 # Gnu population in Antarctica since 1965
 1965 103
 1970 55
 1975 34
 1980 24
 1985 10

When a data file is plotted, samples and isosamples are ignored. Curves plotted using the
plot command are automatically extended to hold the entire curve. Similarly grid data
plotted using the splot command is automatically extended, using the assumption that
isolines are separated by blank lines (a line with only a CR/LF in it).

Implicitly, there are two types of 3-d datafiles. If all the isolines are of the same length, the
data is assumed to be a grid data, i.e., the data has a grid topology. Cross isolines in the
other parametric direction (the ith cross isoline passes through the ith point of all the
provided isolines) will also be drawn for grid data. (Note contouring is available for grid data
only.) If all the isolines are not of the same length, no cross isolines will be drawn and
contouring that data is impossible.

For splot, data files may contain more than one mesh and by default all meshes are plotted.
Meshes are separated from each other, in the file, by double blank lines. To control and splot
a single mesh from a multi mesh file, use the index modifier. See splot index for more.

For splot if 3-d datafile and using format (see splot datafile using) specify only z (height
field), a non parametric mode must be specified. If, on the other hand, x, y, and z are all
specified, a parametric mode should be selected (see set parametric) since data is defining
a parametric surface.

A simple example of plotting a 3-d data file is

 set parametric
 splot 'glass.dat'

or

 set noparametric
 splot 'datafile.dat'

where the file datafile.dat might contain:

 # The valley of the Gnu.
 10
 10
 10

 10
 5
 10

 10
 1
 10

 10
 0
 10

Note datafile.dat defines a 4 by 3 grid (4 rows of 3 points each). Rows are separated by
blank lines.

On some computer systems with a popen function (UNIX), the datafile can be piped through
a shell command by starting the file name with a '<'.    For example:

 pop(x) = 103*exp(-x/10)
 plot '< awk "{print $1-1965, $2}" population.dat', pop(x)

would plot the same information as the first population example but with years since 1965
as the x axis.    If you want to execute this example, you have to delete all comments from
the data file above or substitute the following command for the first part of the command
above (the part up to the comma):

 plot '< awk "$0 !~ /^#/ {print $1-1965, $2}" population.dat'

It is also possible to apply a single function to the "y" value only, e.g.

 plot 'population.dat' thru p(x)

For more information about 3-d plotting, see splot.
using

using

The format of data within a file can be selected with the using option. An explicit scanf
string can be used, or simpler column choices can be made.

Syntax:

 plot "datafile" { using { <ycol> |
 <xcol>:<ycol> |
 <xcol>:<ycol>:<ydelta> |
 <xcol>:<ycol>:<ylow>:<yhigh> |
 <xcol>:<ycol>:<ylow>:<yhigh>:<boxwidth> }
 {"<scanf string>"} } ...

and

 splot "datafile" { using { <xcol>:<ycol>:<zcol> | <zcol> }
 {"<scanf string>"} } ...

<xcol>, <ycol>, and <zcol> explicitly select the columns to plot from a space or tab
separated multicolumn data file. If only <ycol> is selected for plot, <xcol> defaults to 1. If
only <zcol> is selected for splot, then only that column is read from the file. An <xcol> of 0
forces <ycol> to be plotted versus its coordinate number. <xcol>, <ycol>, and <zcol> can
be entered as constants or expressions.

If errorbars (see also plot errorbars) are used for plots, ydelta (for example, a +/- error)
should be provided as the third column, or ylow and yhigh as third and fourth columns.

If boxes or boxerrorbars are used for plots, a fifth column to specify the width of the box may
be given.    This implies that columns three and four must also be provided even if they are
not used. If you want to plot boxes from a data file with three columns, set ylow and yhigh to
y using the following command:
 plot "datafile" using 1:2:2:2:3 with boxes

Scanf strings override any <xcol>:<ycol>(:<zcol>) choices, except for ordering of input,
e.g.,
 plot "datafile" using 2:1 "%f%*f%f"
causes the first column to be y and the third column to be x.

If the scanf string is omitted, the default is generated based on the <xcol>:<ycol>(:<zcol>)
choices. If the using option is omitted, "%f%f" is used for plot ("%f%f%f%f" for errorbars
plots) and "%f%f%f" is used for splot.

Examples:

 plot "MyData" using "%*f%f%*20[^\n]%f" with lines

Data are read from the file "MyData" using the format "%*f%f%*20[^\n]%f". The meaning of
this format is: "%*f" ignore the first number, "%f" then read in the second and assign to x,
"%*20[^\n]" then ignore 20 non-newline characters, "%f" then read in the y value.

 n=3;
 plot "MyData", "MyData" using n

causes GNUPLOT to plot the second and third columns of MyData versus the first column.

The command 'n=4; replot' would then plot the second and fourth columns of MyData
versus the first column.

 splot "glass.dat" using 1

causes GNUPLOT to plot the first coordinate of the points of glass.dat as the z coordinate
while ignoring the other two coordinates.

Note: GNUPLOT first reads a line of the data file into a buffer and then does a
 sscanf(input_buffer, scanf_string, &x, &y{, &z});
where 'x', 'y', and 'z' are of type 'float'. Any scanf string that specifies two (three for splot,
three or four for errorbars) float numbers may be used.

errorbars

Error bars are supported for 2-d data file plots by reading one or two additional columns
specifying ydelta or ylow and yhigh respectively. No support exists for x error bars or any
error bars for splots.

In the default situation, GNUPLOT expects to see three or four numbers on each line of the
data file, either (x, y, ydelta) or (x, y, ylow, yhigh). The x coordinate must be specified. The
order of the numbers must be exactly as given above. Data files in this format can easily be
plotted with error bars:

 plot "data.dat" with errorbars

The error bar is a vertical line plotted from (x, ylow) to (x, yhigh). If ydelta is specified
instead of ylow and yhigh, ylow=y-ydelta and yhigh=y+ydelta are derived. If there are only
two numbers on the line, yhigh and ylow are both set to y. To get lines plotted between the
data points, plot the data file twice, once with errorbars and once with lines.

If y autoscaling is on, the y range will be adjusted to fit the error bars.

The using option may be used to specify how columns of the data file are to be assigned to
x, y, ydelta, ylow, and yhigh. The x column must be provided and both the x and y columns
must appear before the errorbar columns. If three column numbers are given, they are x, y,
and ydelta. If four columns are given, they are x, y, ylow, and yhigh.

Examples:

 plot "data.dat" using 1:2:3:4 with errorbars
 plot "data.dat" using 3:2:6 with errorbars
 plot "data.dat" using 3:4:8:7 with errorbars

The first example reads, x, y, ylow, and yhigh, from columns 1, 2, 3, and 4. This is equivalent
to the default.    The second example reads x from the third column, y from second and
ydelta from the sixth column. The third example reads x from the third column, y from the
fourth, ylow from the eighth, and yhigh from seventh columns.

See also plot using and plot style.

parametric

When in parametric mode (set parametric) mathematical expressions must be given in pairs
for plot and in triplets for splot:
 plot sin(t),t**2
or
 splot cos(u)*cos(v),cos(u)*sin(v),sin(u)

Data files are plotted as before, except any preceding parametric function must be fully
specified before a data file is given as a plot. In other words, the x parametric function (sin(t)
above) and the y parametric function (t**2 above) must not be interrupted with any
modifiers or data functions; doing so will generate a syntax error stating that the parametric
function is not fully specified.

Ranges take on a different meaning when in parametric mode. The first range on the plot
command is the trange, the next is the xrange, and the last is the yrange. For splot the order
is urange, vrange, xrange, yrange, and finally zrange. The following plot command shows
setting the trange to [-pi:pi], the xrange to [-1.3:1.3] and the yrange to [-1:1] for the
duration of the plot:
 plot [-pi:pi] [-1.3:1.3] [-1:1] sin(t),t**2

Other modifiers, such as with and title, may be specified only after the parametric function
has been completed:
 plot sin(t),t**2 title 'Parametric example' with linespoints

ranges

The optional range specifies the region of the plot that will be displayed.

Ranges may be provided on the plot and splot command line and affect only that plot, or in
the set xrange, set yrange, etc., commands, to change the default ranges for future plots.

Syntax:
 [{<dummy-var> =} {<xmin> : <xmax>}] { [{<ymin> : <ymax>}] }

where <dummy-var> is the independent variable (the defaults are x and y, but this may be
changed with set dummy) and the min and max terms can be constant expressions.

Both the min and max terms are optional. The ':' is also optional if neither a min nor a max
term is specified. This allows '[]' to be used as a null range specification.

Specifying a range in the plot command line turns autoscaling for that axis off for that plot.
Using one of the set range commands turns autoscaling off for that axis for future plots,
unless changed later. (See set autoscale).

Examples:

This uses the current ranges:
 plot cos(x)

This sets the x range only:
 plot [-10:30] sin(pi*x)/(pi*x)

This is the same, but uses t as the dummy-variable:
 plot [t = -10 :30] sin(pi*t)/(pi*t)

This sets both the x and y ranges:
 plot [-pi:pi] [-3:3] tan(x), 1/x

This sets only the y range, and turns off autoscaling on both axes:
 plot [] [-2:sin(5)*-8] sin(x)**besj0(x)

This sets xmax and ymin only:
 plot [:200] [-pi:] exp(sin(x))

This sets the x, y, and z ranges:
 splot [0:3] [1:4] [-1:1] x*y

index

Splotting of multi mesh data files can be controlled via the index modifier. A data file can
contain more than one mesh, and in that case all meshes in the file will be splotted by
default. Meshes are separated from each other, in the data file, by double blank lines. To
splot a single mesh in a multi mesh file use the index modifier which specify which mesh to
splot. First mesh is mesh 0.

Example:

splot "data1" index 2 with points

will splot the third mesh in file data1 with points.

style

Plots may be displayed in one of eight styles: lines, points, linespoints, impulses, dots,
errorbars, steps, boxes, or boxerrorbars.    The lines style connects adjacent points with lines.
The points style displays a small symbol at each point. The linespoints style does both lines
and points. The impulses style displays a vertical line from the x axis (or from the grid base
for splot) to each point. The dots style plots a tiny dot at each point; this is useful for scatter
plots with many points.

The errorbars style is only relevant to 2-d data file plotting. It is treated like points for splots
and function plots. For data plots, errorbars is like points, except that a vertical error bar is
also drawn: for each point (x,y), a line is drawn from (x,ylow) to (x,yhigh). A tic mark is
placed at the ends of the error bar. The ylow and yhigh values are read from the data file's
columns, as specified with the using option to plot. See plot errorbars for more information.

The boxes style is only relevant to 2-d plotting.    Another style called boxerrorbars is also
available and is only relevant to 2-d data file plotting.    This style is a combination of the
boxes and errorbars styles.    The boxes style draws a box centred about the given x
coordinate from the yaxis to the given y coordinate. The width of the box is obtained in one
of three ways.    First, if a    data file has a fifth column, this will be used to set the width of   
the box. Columns 3 and 4 (for boxerrorbars) are necessary but ignored in this instance.   
Secondly, if a width has been set using    the set boxwidth command, this will be used.   
Otherwise the width    of each box will be calculated automatically so that it touches the
adjacent boxes.

The steps style is only relevant to 2-d plotting.    This style connects consecutive points with
two line segments: the first from (x1,y1) to (x2,y1) and the second from (x2,y1) to (x2,y2).

Default styles are chosen with the set function style and set data style commands.

By default, each function and data file will use a different line type and point type, up to the
maximum number of available types. All terminal drivers support at least six different point
types, and re-use them, in order, if more than six are required. The LaTeX driver supplies an
additional six point types (all variants of a circle), and thus will only repeat after twelve
curves are plotted with points.

If desired, the style and (optionally) the line type and point type used for a curve can be
specified.

Syntax:

 with <style> {<linetype> {<pointtype>}}

where <style> is either lines, points, linespoints, impulses, dots, steps, or errorbars. The
<linetype> and <pointtype> are positive integer constants or expressions and specify the
line type and point type to be used for the plot. Line type 1 is the first line type used by
default, line type 2 is the second line type used by default, etc.

Examples:

This plots sin(x) with impulses:
 plot sin(x) with impulses

This plots x*y with points, x**2 + y**2 default:
 splot x*y w points, x**2 + y**2

This plots tan(x) with the default function style, "data.1" with lines:
 plot [] [-2:5] tan(x), "data.1" with l

This plots "leastsq.dat" with impulses:
 plot 'leastsq.dat' w i

This plots the data file 'population' with boxes:
 plot "population" with boxes

This plots "exper.dat" with errorbars and lines connecting the points:
 plot 'exper.dat' w lines, 'exper.dat' w errorbars

Here 'exper.dat' should have three or four data columns.

This plots x**2 + y**2 and x**2 - y**2 with the same line type:
 splot x**2 + y**2 with line 1, x**2 - y**2 with line 1

This plots sin(x) and cos(x) with linespoints, using the same line type but different point
types:
 plot sin(x) with linesp 1 3, cos(x) with linesp 1 4

This plots file "data" with points style 3:
 plot "data" with points 1 3
Note that the line style must be specified when specifying the point style, even when it is
irrelevant. Here the line style is 1 and the point style is 3, and the line style is irrelevant.

See set style to change the default styles.

title

A title of each plot appears in the key. By default the title is the function or file name as it
appears on the plot command line. The title can be changed by using the title option. This
option should precede any with option.

Syntax:
 title "<title>"

where <title> is the new title of the plot and must be enclosed in quotes. The quotes will not
be shown in the key.

Examples:

This plots y=x with the title 'x':
 plot x

This plots the "glass.dat" file with the title 'surface of revolution':
 splot "glass.dat" title 'surface of revolution'

This plots x squared with title "x^2" and "data.1" with title 'measured data':
 plot x**2 title "x^2", "data.1" t 'measured data'

The title can be omitted from the key with the "notitle" option for plot and splot.    This can
be useful when some curves are plotted solely for decoration; for example, if one wanted a
circular border for a polar plot, he could say:

Example:
 set polar
 plot my_function(x), 1 notitle

This would generate a key entry for "my_function" but not for "1". See the poldat.dem
example.

print

The print command prints the value of <expression> to the screen.

Syntax:
 print <expression>

See expressions.

pwd

The pwd command prints the name of the working directory to the screen.

Syntax:
 pwd

quit

The exit and quit commands and END-OF-FILE character will exit GNUPLOT. All these
commands will clear the output device (as the clear command does) before exiting.

replot

The replot command without arguments repeats the last plot or splot command. This can
be useful for viewing a plot with different set options, or when generating the same plot for
several devices.

Arguments specified after a replot command will be added onto the last plot (splot)
command (with an implied ',' separator) before it is repeated. replot accepts the same
arguments as the plot (splot) commands except that ranges cannot be specified. See
command line-editing for ways to edit the last plot (splot) command.

reread

The reread command causes the current gnuplot command file, as specified by a load
command or on the command line, to be reset to its starting point before further commands
are read from it.    This essentially implements an endless loop of the commands from the
beginning of the command file to the reread command.    The reread command has no
effect if input from standard input.

save

The save command saves user-defined functions, variables, set options or all three plus the
last plot (splot) command to the specified file.

Syntax:
 save {<option>} "<filename>"

where <option> is functions, variables or set. If no option is used, GNUPLOT saves functions,
variables, set options and the last plot (splot) command.

saved files are written in text format and may be read by the load command.

The filename must be enclosed in quotes.

Examples:

 save "work.gnu"
 save functions 'func.dat'
 save var 'var.dat'
 save set "options.dat"

set-show

The set command sets LOTS of options.

The show command shows their settings. show all shows all the settings.
angles
arrow
autoscale
border
boxwidth
clabel
clip
cntrparam
contour
data style
dgrid3d
dummy
format
function style
functions
grid
hidden3d
isosamples
key
label
logscale
mapping
offsets
output
parametric
polar
rrange
samples
size
style
surface
terminal
tics
time
title
trange
urange
variables
view
vrange
xlabel
xrange
xtics
xdtics
xmtics
xzeroaxis
ylabel
yrange
ytics
ydtics

ymtics
yzeroaxis
zero
zeroaxis
zlabel
zrange
ztics
zdtics
zmtics

angles

By default, GNUPLOT assumes the independent variable in polar plots is in units of radians. If
set angles degrees is specified before set polar then the default range is [0:360] and the
independent variable has units of degrees. This is particularly useful for plots of data files.
The angle setting also hold for the 3-d mapping as set via the set mapping command.

Syntax:
 set angles { degrees | radians }
 show angles

arrow

Arbitrary arrows can be placed on a plot using the set arrow command.

Syntax:

 set arrow {<tag>} {from <sx>,<sy>{,<sz>}}
 {to <ex>,<ey>{,<ez>}} {{no}head}
 set noarrow {<tag>}
 show arrow

Unspecified coordinates default to 0. The x, y, and z values are in the graph's coordinate
system. The z coordinate is only used in splot commands. <tag> is an integer that identifies
the arrow. If no tag is given, the lowest unused tag value is assigned automatically. The tag
can be used to delete or change a specific arrow. To change any attribute of an existing
arrow, use the set arrow command with the appropriate tag, and specify the parts of the
arrow to be changed. Specifying nohead requests the arrow be drawn without a head
(yielding a line segment). By default, arrows have heads.

Arrows outside the plotted boundaries are permitted but may cause device errors.

Examples:

To set an arrow pointing from the origin to (1,2), use:
 set arrow to 1,2
To set an arrow from (-10,4,2) to (-5,5,3), and tag the arrow number 3, use:
 set arrow 3 from -10,4,2 to -5,5,3
To change the preceding arrow begin at 1,1,1, without an arrow head, use:
 set arrow 3 from 1,1,1 nohead
To delete arrow number 2 use:
 set noarrow 2
To delete all arrows use:
 set noarrow
To show all arrows (in tag order) use:
 show arrow

autoscale

Auto scaling may be set individually on the x, y or z axis or globally on all axes. The default
is to autoscale all axes.

When autoscaling, the plot range is automatically computed and the dependent axis (y for a
plot and z for splot) is scaled to include the range of the function or data being plotted.

If autoscaling of the dependent axis (y or z) is not set, the current y or z range is used.

See set yrange or set zrange.

Autoscaling the independent variables (x for plot and x,y for splot) is a request to set the
domain to match any data file being plotted. If there are no data files then autoscaling an
independent variable has no effect. In other words, in the absence of a data file, functions
alone do not affect the x range (or the y range if plotting z = f(x,y)).

See set xrange, or set yrange.

The behavior of autoscaling remains consistent in parametric mode, however, there are
more dependent variables and hence more control over x, y, and z plot scales. In parametric
mode, the independent or dummy variable is t for plots and u,v for splots.    Autoscale in
parametric mode, then, controls all ranges (t, u, v, x, y, and z) and allows x, y, and z to be
fully autoscaled.

See set parametric.

Syntax:
 set autoscale <axes>
 set noautoscale <axes>
 show autoscale

where <axes> is either x, y, z or xy. If <axes> is not given then all axes are assumed.

Examples:

This sets autoscaling of the y axis. x axis autoscaling is not affected.
 set autoscale y

This sets autoscaling of the x and y axes.
 set autoscale xy

This sets autoscaling of the x, y and z axes.
 set autoscale

This disables autoscaling of the x, y and z axes.
 set noautoscale

This disables autoscaling of the z axis only.
 set noautoscale z

parametric mode

parametric mode

When in parametric mode (set parametric) the xrange is as fully scalable as the yrange. In
other words, in parametric mode the x axis can be automatically scaled to fit the range of
the parametric function that is being plotted. Of course, the y axis can also be automatically
scaled just as in the non-parametric case. If autoscaling on the x axis is not set, the current x
range is used.

When there is a mix of data files and functions, the xrange of the functions is selected as
that of the data files if autoscale is true for x. While this keeps the behavior compatible with
non-parametric plotting, it may not be retained in the future. The problem is that, in
parametric mode, the x and y ranges are not as distinguishable as in the non-parametric
mode and this behavior may not be the most useful.

For completeness a last command set autoscale t is accepted. However, the effect of this
"scaling" is very minor. When GNUPLOT determines that the t range would be empty it
makes a small adjustment if autoscaling is true. Otherwise, GNUPLOT gives an error. Such
behavior may, in fact, not be very useful and the command set autoscale t is certainly
questionable.

splot extends the above idea similarly. If autoscaling is set then x, y, and z ranges are
computed and each axis scaled to fit the resulting data.

border

The set border and set noborder commands controls the display of the plot borders for
the plot and splot commands.

Syntax:
 set border
 set noborder
 show border

boxwidth

The set boxwidth command is used to set the default width of boxes in the boxes and
boxerrorbars styles.

If a data file is plotted without the width being specified in the fifth column, or a function is
plotted, the width of each box is set by the set boxwidth command.    If a width is given
after the set boxwidth command then this is used as the width.    Otherwise the width of
each box will be calculated automatically so that it touches the adjacent boxes.

Syntax:
 set boxwidth {<width>}
 show boxwidth

To set the box width to automatic use the command
 set boxwidth

clabel

GNUPLOT will vary the linetype used for each contour level when clabel is set. When this
option on (the default), a legend labels each linestyle with the z level it represents.

Syntax:
 set clabel
 set noclabel
 show clabel

clip

GNUPLOT can clip data points and lines that are near the boundaries of a plot.

Syntax:
 set clip <clip-type>
 set noclip <clip-type>
 show clip

Three clip types are supported by GNUPLOT: points, one, and two. One, two, or all three clip
types may be active for a single plot.

The points clip type forces GNUPLOT to clip (actually, not plot at all) data points that fall
within but too close to the boundaries (this is so the large symbols used for points will not
extend outside the boundary lines). Without clipping points near the boundaries may look
bad; try adjusting the x and y ranges.

Setting the one clip type causes GNUPLOT to plot the line segments which have only one of
the two endpoints within the plotting region. Only the in-range portion of the line is drawn.   
The alternative is to not draw any portion of the line segment.

Some lines may have both endpoints out of range, but pass through the plotting area.
Setting the two clip-type allows the visible portion of these lines to be drawn.

In no case is a line drawn outside the plotting area.

The defaults are noclip points, clip one, and noclip two.

To check the state of all forms of clipping, use
 show clip

For backward compatibility with older versions, the following forms are also permitted.
 set clip
 set noclip
set clip is synonymous with set clip points. set noclip turns off all three types of clipping.

cntrparam

Sets the different parameters for the contouring plot (see also contour).

Syntax:
 set cntrparam { { linear | cubicspline | bspline } |
 points <n> |
 order <n> |
 levels { [auto] <n> |
 discrete <z1>,<z2>, ... |
 incremental {<start>, <incr>{, <end>} } }

Examples:
 set cntrparam bspline
 set cntrparam points 7
 set cntrparam order 10
 set cntrparam levels auto 5 # 5 automatic levels
 set cntrparam levels discrete .1,1/exp(1),.9 # 3 discrete at .1,.37,.9
 set cntrparam levels incremental 0,.1,.4
 # 5 incremental levels at 0, .1, .2, .3 and .4
 set cntrparam levels 10
 # sets n = 10 retaining current setting of auto, discr. and
 # increment's start and increment value, while changing end
 set cntrparam levels incremental 100,50
 # set start = 100 and increment = 50, retaining n levels

This command controls the way contours are plotted. <n> should be an integral constant
expression and <z1>, <z2> any constant expressions. The parameters are:

linear, cubicspline, bspline - Controls type of approximation or interpolation. If linear,
then the contours are drawn piecewise linear, as extracted from the surface directly. If
cubicspline, then piecewise linear contours are interpolated to form a somewhat smoother
contours, but which may undulate. The third option is the uniform bspline, which only
approximates the piecewise linear data but is guaranteed to be smoother.

points - Eventually all drawings are done with piecewise linear strokes.    This number
controls the number of points used to approximate a curve.    Relevant for cubicspline and
bspline modes only.

order    - Order of the bspline approximation to be used. The bigger this order is, the
smoother the resulting contour.    (Of course, higher order bspline curves will move further
away from the original piecewise linear data.)    This option is relevant for bspline mode
only. Allowed values are integers in the range from 2 (linear) to 10.

levels - Number of contour levels, 'n'.    Selection of the levels is controlled by 'auto'
(default), 'discrete', and 'incremental'. For 'auto', if the surface is bounded by zmin and zmax
then contours will be generated from zmin+dz to zmax-dz in steps of size dz, where dz =
(zmax - zmin) / (levels + 1).    For 'discrete', contours will be generated at z = z1, z2 ... as
specified.    The number of discrete levels is limited to MAX_DISCRETE_LEVELS, defined in
plot.h to be 30.    If 'incremental', contours are generated at <n> values of z beginning at
<start> and increasing by <increment>.

contour

Enable contour drawing for surfaces. This option is available for splot only.

Syntax:
 set contour { base | surface | both }
 set nocontour

If no option is provided to set contour, the default is base. The three options specify where
to draw the contours: base draws the contours on the grid base where the x/ytics are
placed, surface draws the contours on the surfaces themselves, and both draws the
contours on both the base and the surface.

See also set cntrparam for the parameters that affect the drawing of contours.

data style

The set data style command changes the default plotting style for data plots.

Syntax:
 set data style
 show data style
 set data style <style-choice>

In the first case, set data style returns the possible style choices:    lines, points,
linespoints, dots, steps, impulses, errorbars, boxes or boxerrorbars.    show data style
shows the current default plotting style for data.    set data style dots would actually   
change the default plotting style.    See also plot.

dgrid3d

Enables and sets the different parameters for non grid to grid data mapping.

Syntax:
 set dgrid3d {,{<row_size>}{,{<col_size>}{,<norm>}}}
 set nodgrid3d

Examples:
 set dgrid3d 10,10,2
 set dgrid3d ,,4

The first selects a grid of size 10 by 10 to be constructed and the use of L2 norm in the
distance computation. The second only modifies the norm to be used to L4.

By default this option is disabled. When enabled, 3d data read from a file is always treaded
as a scattered data set. A grid with dimensions derived from a bounding box of the scattered
data and size as specified by the row/col_size above is created for plotting and contouring.
The grid is equally spaced in x and y while the z value is computed as a weighted average of
the scattered points distance to the grid points. The closer the scatter points to a grid point
are the more effect they have on that grid point. The third, norm, parameter controls the
"meaning" of the distance, by specifying the distance norm. This distance computation is
optimized for powers of 2 norms, specifically 1, 2, 4, 8, and 16, but any nonnegative integer
can be used.

This dgrid3d option is a simple low pass filter that converts scattered data to a grid data set.
More sophisticated approaches to this problem exists and should be used as a preprocess to
and outside gnuplot if this simple solution is found inadequate.

dummy

By default, GNUPLOT assumes that the independent variable for the plot command is x, and
the independent variables for the splot command are x and y. They are called the dummy
variables because it is just a notation to indicate the independent variables. The set
dummy command changes these default dummy variable names. For example, it may be
more convenient to call the dummy variable t when plotting time functions:

 set dummy t
 plot sin(t), cos(t)

Syntax:
 set dummy <dummy-var>{,<dummy-var>}
 show dummy

Examples:
 set dummy u,v
 set dummy ,s

to set both dummy variables to u and v or set only the second variable to s.

The set parametric command also changes the dummy variables (to t for plot and u,v for
splots).

format

The format of the tic-mark labels can be set with the set format command. The default
format for both axes is "%g", but other formats such as "%.2f" or "%3.0fm" are often
desirable. Anything accepted by printf when given a double precision number, and then
accepted by the terminal, will work. In particular, the formats f, e, and g will work, and the d,
o, x, c, s, and u formats will not work.

Syntax:
 set format {<axes>} {"<format-string>"}
 show format

where <axes> is either x, y, z, xy, or nothing (which is the same as xy). The length of the
string representing a ticmark (after formatting with printf) is restricted to 100 characters.    If
the format string is omitted, the format will be returned to the default "%g". For LaTeX users,
the format "$%g$" is often desirable.    If the empty string "" is used, no label will be plotted
with each tic, though the tic mark will still be plotted. To eliminate all tic marks, use set
noxtics or set noytics.

See also set xtics and set ytics for more control over tic labels.

function style

The set function style command changes the default plotting style for functions.

Syntax:
 set function style
 show function style
 set function style <style-choice>

In the first case, set function style returns the possible style choices:    lines, points,
linespoints, dots, steps, impulses, errorbars, boxes, or boxerrorbars. show function style
shows the current default plotting style for functions.    set function style linespoints
would actually change the default plotting style.      See also plot.

functions

The show functions command lists all user-defined functions and their definitions.

Syntax:
 show functions

grid

The optional set grid draws a grid at the tic marks with the axis linetype.

Syntax:
 set grid
 set nogrid
 show grid

hidden3d

The set hidden3d command enables hidden line removal for explicit surface plotting (see
splot). Hidden line removal may be used for both explicit functions and for explicit data.    It
now works for parametric surfaces as well.

When this flag is set both the surface hidden portion and possibly its hidden contours (see
set contour) as well as the hidden grid will be removed. Labels and arrows are always visible
and are unaffected by this command.

Each surface has its hidden parts removed with respect to itself and to other surfaces, if
more than one surface is plotted. This mode is meaningful when surfaces are plotted using
line style drawing only.

Syntax:
 set hidden3d
 set nohidden3d
 show hidden3d

isosamples

An isoline is a curve parametrized by one of the surface parameters while the other surface
parameter is fixed. Isolines are a simple means to display a surface. By fixing the u
parameter of surface s(u,v), the iso-u lines of the form c(v) = s(u0,v) are produced, and by
fixing the v parameter, the iso-v lines of the form c(u) = s(u,v0) are produced.

The isoline density of surfaces may be changed by the set isosamples command. By
default, sampling is set to 10 isolines per u or v axis. A higher sampling rate will produce
more accurate plots, but will take longer. This parameter has no effect on data file plotting.

Syntax:
 set isosamples <iso_1> {,<iso_2>}
 show isosamples

Each surface plot will have <iso_1> iso-u lines and <iso_2> iso-v lines. If you only specify
<iso_1>, <iso_2> will be set to the same value as <iso_1>.

When a surface plot is being done without the removal of hidden lines, set samples also has
an effect on the number of points being evaluated. See set samples.

key

The set key enables a key describing curves on a plot.    By default the key is placed in the
upper right corner of the plot.

Syntax:
 set key
 set key <x>,<y>{,<z>}
 set nokey
 show key

The coordinates <x>, <y> (and <z> for splots) specify the location of the key on the plot.
The key is drawn as a sequence of lines, with one plot described on each line. On the right
hand side of each line is a representation that attempts to mimic the way the curve is
plotted.    On the left side of each line is the text description, obtained from the plot
command. See plot title to change this description. The lines are vertically arranged so an
imaginary straight line divides the left- and right-hand sides of the key. It is the coordinates
of this line that are specified with the set key command. In a plot, only the x and y
coordinates are used to specify the line position.    For a splot, x, y and z are all being used as
a 3-d location mapped using the same mapping as the plot itself to form the required 2-d
screen position of the imaginary line.

Some or all of the key may be outside of the plot boundary, although this may interfere with
other labels and may cause an error on some devices.

Examples:

This places the key at the default location:
 set key
This disables the key:
 set nokey
This places a key at coordinates 2,3.5,2
 set key 2,3.5,2

label

Arbitrary labels can be placed on the plot using the set label command.    If the z coordinate
is given on a plot it is ignored; if it is missing on a splot it is assumed to be 0.

Syntax:

 set label {<tag>} {"<label_text>"} {at <x>,<y>{,<z>}}
 {<justification>}
 set nolabel {<tag>}
 show label

The text defaults to "", and the position to 0,0,0.    The <x>, <y>, and <z> values are in the
graph's coordinate system.    The tag is an integer that is used to identify the label. If no
<tag> is given, the lowest unused tag value is assigned automatically. The tag can be used
to delete or change a specific label. To change any attribute of an existing label, use the set
label command with the appropriate tag, and specify the parts of the label to be changed.

By default, the text is placed flush left against the point x,y,z. To adjust the way the label is
positioned with respect to the point x,y,z, add the parameter <justification>, which may be
left, right or center, indicating that the point is to be at the left, right or center of the text.
Labels outside the plotted boundaries are permitted but may interfere with axes labels or
other text.

Examples:

To set a label at (1,2) to "y=x" use:
 set label "y=x" at 1,2
To set a label "y=x^2" with the right of the text at (2,3,4), and tag the label number 3, use:
 set label 3 "y=x^2" at 2,3,4 right
To change the preceding label to center justification, use:
 set label 3 center
To delete label number 2 use:
 set nolabel 2
To delete all labels use:
 set nolabel
To show all labels (in tag order) use:
 show label

(The EEPIC, Imagen, LaTeX, and TPIC drivers allow \\ in a string to specify a newline.)

logscale

Log scaling may be set on the x, y, and z axes.

Syntax:
 set logscale <axes> <base>
 set nologscale <axes>
 show logscale

where <axes> may be any combinations of x, y, and z, in any order, and where <base> is
the base of the log scaling.    If <base> is not given, then 10 is assumed.    If <axes> is not
given then all three axes are assumed.    The command set logscale turns on log scaling on
the specified axes, while set nologscale turns off log scaling.

Examples:

To enable log scaling in both x and z axes:
 set logscale xz
To enable scaling log base 2 of the y axis:
 set logscale y 2
To disable z axis log scaling:
 set nologscale z

mapping

Syntax:
 set mapping { cartesian | spherical | cylindrical }

Data for splots are usually in regular Euclidean space and are provided in Cartesian
coordinates. Such 3-d data require three coordinates (x, y and z) or one coordinate (only z)
in each line in the data file.    In order to be able to use spherical or cylindrical coordinate
systems, use the set mapping command. In both cases two coordinates are expected in
each line of the data. For a spherical coordinate system, these are theta and phi (in units as
specified by set angles) and the mapping is:

 x = cos(theta) * cos(phi)
 y = sin(theta) * cos(phi)
 z = sin(phi)

For a cylindrical coordinate system, the mapping uses two variables, theta (in units as
specified by set angles) and z:

 x = cos(theta)
 y = sin(theta)
 z = z

Again, note that mapping will affect data file splots only.

offsets

The amount of the graph that the plot takes up may be controlled to some extent with the
set offsets command. This command takes four offset arguments: <left>, <right>, <top>
and <bottom>. By default, each offset is 0. Each offset may be a constant or an expression.
Left and right offsets are given in units of the x axis, while top and bottom offsets are given
in units of the y axis. The plot of sin(x), displayed with offsets of 0, 0, 2, 2 will take up 1/3 of
the displayed y axis. Offsets are particularly useful with polar coordinates as a means of
compensating for aspect ratio distortion. Offsets are ignored in splots.

Syntax:
 set offsets <left>, <right>, <top>, <bottom>
 show offsets

output

By default, plots are displayed to the standard output. The set output command redirects
the display to the specified file or device.

Syntax:
 set output {"<filename>"}
 show output

The filename must be enclosed in quotes. If the filename is omitted, output will be sent to
the standard output.

On machines with popen functions (UNIX), output can be piped through a shell command if
the first letter of the filename is '|'.    For instance,

Syntax:
 set output "|lpr -Plaser filename"
 set output "|lp -dlaser filename"

(On MSDOS machines, set output "prn" will direct the output to the default printer.)

parametric

The set parametric command changes the meaning of plot (splot) from normal functions to
parametric functions. The command set noparametric changes the plotting style back to
normal, single-valued expression plotting.

In 2-d plotting, a parametric function is determined by a pair of parametric functions
operating on a parameter. An example of a 2-d parametric function would be plot
sin(t),cos(t) (which defines a circle).

For 3-d plotting, the surface is described as x=f(u,v), y=g(u,v), z=h(u,v). Therefore a triplet
of functions are required. An example of 3-d parametric function would be
cos(u)*cos(v),cos(u)*sin(v),sin(u) (which defines a sphere). It takes three parametric function
specifications in terms of the parametric dummy arguments to describe a single graph.

The total set of possible plots is a superset of the simple f(x) style plots, since the two
(three) functions can describe the x and y (and z) values to be computed separately. In fact,
plots of the type t,f(t) (u,v,f(u,v)) are equivalent to those produced with f(x) when the x
values are computed using the identity function as the first function.

Note that the order the parametric functions are specified is xfunction, yfunction (and
zfunction) and that each operates over the common parametric domain.

Also, the set parametric function implies a new range of values. Whereas the normal f(x)
and f(x,y) style plotting assume an xrange and yrange (and zrange), the parametric mode
additionally specifies a trange, urange, and vrange. These ranges may be set directly with
set trange, set urange and set vrange, or by specifying the range on the plot or splot
commands. Currently the default range for these parametric variables is [-5:5]. Setting the
ranges to something more meaningful is expected.

polar

The set polar command changes the meaning of the plot from rectangular coordinates to
polar coordinates. In polar coordinates, the dummy variable (x) is an angle. The range of this
angle is changed from whatever it was to [0:2*pi], or, if degree unit has been selected, to
[0:360] (see set angles).

The command set nopolar changes the meaning of the plot back to the default rectangular
coordinate system. The range of x is changed from whatever it was to [-10:10].

The set polar command is not supported for splots.    See the set mapping command for
similar functionality for splots.

While in polar coordinates the meaning of an expression in x is really r = f(x), where x is an
angle of rotation. The xrange controls the domain (the angle) of the function, and the yrange
controls the range (the radius). The plot is plotted in a rectangular box, and the x and y axes
are both in units of the radius. Thus, the yrange controls both dimensions of the plot output.
The tics and units are written along the axes rather than at the left and bottom. These unit
are offset by <rmin> specified by the rrange (See set rrange). It is not possible to specify
different output dimensions in the x or y directions. The yrange can be used to shift the plot
diagonally to display only the first or third quadrants.

Syntax:
 set polar
 set nopolar
 show polar
Example:
 set polar
 plot x*sin(x)
 plot [-2*pi:2*pi] [-3:3] x*sin(x)
The first plot uses the default polar angular domain of 0 to 2*pi. The radius (and the size of
the plot) is scaled automatically. The second plot expands the domain, and restricts the
range of the radius (and the size of the plot) to [-3:3].

rrange

The set rrange command sets the radial range used to compute x and y values when in
polar mode. If not in polar mode (see set polar) then this range is not used. Use of this
command offsets the polar singularity to the <rmin> value and shifts the units on the axes
tic marks. For instance, set rrange [-40:40] would set the origin to -40 and would plot
values of radial values between -40 to 40. Thus, if 360 degrees of data were plotted, then
the plot would extend 80 units in radially from the origin.    To view the entire plot,    a set
yrange [-80:80] command would create a square viewport with a circular plot tangent at
the axes.    Because xrange is used specify the angular extent, only a square viewport can be
specified by yrange.    For instance, set yrange [0:80] would display the first quadrant and
set yrange [-80:0] would display the third quadrant.    Any square viewport of any size can
be specified but it is constrained to be centered on a 45 degree line.

This range may also be specified on the plot command line when in polar mode.

Syntax:
 set rrange [{<rmin> : <rmax>}]

where <rmin> and <rmax> terms are constants or expressions.

Both the <rmin> and <rmax> terms are optional. Anything omitted will not be changed, so
 set rrange [:10]
changes rmax to 10 without affecting rmin.

samples

The sampling rate of functions may be changed by the set samples command. By default,
sampling is set to 100 points. A higher sampling rate will produce more accurate plots, but
will take longer. This parameter no longer has any effect on data-file plotting.

Syntax:
 set samples <samples_1> {,<samples_2>}
 show samples

When a 2-d plot is being done, only the value of <samples_1> is relevant.

When a surface plot is being done without the removal of hidden lines, the value of samples
specifies the number of samples that are evaluated per iso line. Each iso-v line will have
<sample_1> samples and each iso-u line will have <sample_2> samples. If you only specify
<samples_1>, <samples_2> will be set to the same value as <samples_1>. See also set
isosamples.

size

The set size command scales the displayed size of the plot.    On some terminals, changing
the size of the plot will result in text being misplaced. Increasing the size of the plot may
produce strange results. Decreasing is safer.

Syntax:

 set size {<xscale>,<yscale>}
 show size

The <xscale> and <yscale> values are the scaling factors for the size. The defaults (1,1)
are selected if the scaling factors are omitted.

Examples:

To set the size to normal size use:
 set size
To make the plot half size use:
 set size 0.5,0.5
To make a landscape plot have a 1:1 aspect ratio in polar mode use:
 set size 0.721,1.0
To show the size use:
 show size

For the LaTeX and Fig terminals the default size (scale factor 1,1) is 5 inches wide by 3
inches high. The big Fig terminal (bfig) is 7 inches wide by 5 inches high. The postscript
default is landscape mode 10 inches wide and 7 inches high. Note that the size of the plot
includes the space used by the labels; the plotting area itself is smaller.

style

Plots may be displayed in one of eight styles: lines, points, linespoints, impulses, dots,
steps, errorbars, boxes, or boxerrorbars.    The lines style connects adjacent points with
lines. The points style displays a small symbol at each point. The linespoints style does
both lines and points. The impulses style displays a vertical line from the x axis (or from
the grid base for splot) to each point. The dots style plots a tiny dot at each point; this is
useful for scatter plots with many points.

The errorbars style is only relevant to 2-d data file plotting. It is treated like points for splots
and function plots. For data plots, errorbars is like points, except that a vertical error bar is
also drawn: for each point (x,y), a line is drawn from (x,ylow) to (x,yhigh). A tic mark is
placed at the ends of the error bar. The ylow and yhigh values are read from the data file's
columns, as specified with the using option to plot. See plot errorbars for more information.

The boxes style is only relevant to 2-d plotting.    It draws a box centred about the given x
coordinate from the yaxis to the given y coordinate.      The width of the box is obtained in
one of three ways.    If a data file has a fifth column, this will be used to set the width of the
box.    Otherwise, if a width has been set using the set boxwidth command, this will be used. 
Otherwise the width of each box will be calculated automatically so that it touches the
adjacent boxes.    Another style called boxerrorbars is also available and is only    relevant
to 2-d data file plotting.    This style is a combination of the boxes and errorbars styles.

The steps style is only relevant to 2-d plotting.    This style connects consecutive points with
two line segments: the first from (x1,y1) to (x2,y1) and the second from (x2,y1) to (x2,y2).

Default styles are chosen with the set function style and set data style commands. See plot
style for information about how to override the default plotting style for individual functions.

Syntax:
 set function style <style>
 set data style <style>
 show function style
 show data style

where <style> is lines, points, linespoints, impulses, dots, steps, errorbars, boxes, or
boxerrorbars.

surface

set surface controls the display of surfaces. It is useful if contours are to be displayed by
themselves. Whenever set nosurface is issued, no surface isolines/mesh will be drawn. See
also set contour.

Syntax:
 set surface
 set nosurface
 show surface

terminal

GNUPLOT supports many different graphics devices. Use the set terminal command to
select the type of device for which GNUPLOT will produce output.

Syntax:
 set terminal {<terminal-type>}
 show terminal

If <terminal-type> is omitted, GNUPLOT will list the available terminal types. <terminal-
type> may be abbreviated.

Use set output to redirect this output to a file or device.

Several terminals have additional options. For example, see dumb, iris4d, hpljii or postscript.
aifm
atari ST
dumb
epson
gpic
hpljii
latex
iris4d
mf
mif
nec-cp6
pbm
pcl5
postscript
regis
table
windows

aifm

Several options may be set in the Adobe Illustrator 3.0 driver.

Syntax:
 set terminal aifm {<color>}
 {"<fontname>"} {<fontsize>}

Selecting default sets all options to their default values. <color> is either color or
monochrome. "<fontname>" is the name of a valid PostScript font. <fontsize> is the size
of the font in PostScript points, before scaling by the set size command. Defaults are
monochrome, "Helvetica", and 14pt.

Also, since AI does not really support multiple pages, multiple graphs will be output directly
on one another.    However, each graph will be grouped individually, making it easy to
separate them inside AI (just pick them up and move them).

Examples:

 set term aifm
 set term aifm 22
 set size 0.7,1.4
 set term aifm color "Times-Roman" 14

atari ST

The atari terminal has an option to set the character size and the screen colors.    The driver
expects a space separated list the char size and maximal 16 3 digit hex numbers where
each digit represents RED, GREEN and BLUE (in that order).    The range of 0-15 is scaled to
whatever color range the screen actually has.    On a normal ST screen, odd and even
intensities are the same.

Examples:

 set terminal atari 4 # (use small (6x6) font)
 set terminal atari 6 0 # (set monochrome screen to white on black)
 set terminal atari 13 0 fff f00 f0 f ff f0f ff0
 # (set first eight colors to black, white, green, blue, cyan, \
 purple, and yellow and use large font (8x16).)

Additionally, if an environment variable GNUCOLORS exists, its contents are interpreted as
an options string, but an explicit terminal option takes precedence.

dumb

The dumb terminal driver has an optional size specification.

Syntax:
 set terminal dumb {<xsize> <ysize>}

where <xsize> and <ysize> set the size of the dumb terminals. Default is 79 by 24.

Examples:
 set term dumb
 set term dumb 79 49 # VGA screen--why would anyone want to do that?

epson

This set of drivers support Epson printers and derivatives.      See also the NEC driver.   
epson is a generic 9 wire printer with a resolution of 512x384. starc is a Star Color printer
with the same resolution. epson180 and epson60 are 180 dpi and 60 dpi drivers for newer
24 wire printers.    This also includes bubble jet printers.    Their resolutions are 1260x1080
and 480x360, respectively.    The tandy60 is identical to the epson60 driver with one
additional escape sequence to start IBM mode.    With all of these drivers, a binary copy is
required on a PC to print.    Do not use print.

 copy file /b lpt1:

gpic

This driver is only known to work the Free Software Foundation gpic/groff package.   
Modification for the Document Workbench pic/troff package would be appreciated.    FSF gpic
can also produce TeX output.

A simple graph can be formatted using

 groff -p -mpic -Tps file.pic > file.ps.

The output from pic can be pipe-lined into eqn, so it is possible to put complex functions in a
graph with the set label and set {x/y}label commands. For instance,

 set ylab '@space 0 int from 0 to x alpha (t) roman d t@'

Will label the y-axis with a nice integral if formatted with the command:

 gpic filename.pic | geqn -d@@ -Tps | groff -m[macro-package] -Tps
 > filename.ps

Figures made this way can be scaled to fit into a document. The pic language is easy to
understand, so the graphs can be edited by hand if need be. All coordinates in the pic-file
produced by gnuplot are given as x+gnuplotx and y+gnuploty. By default x and y are given
the value 0 If this line is removed with an editor in a number of files one can put several
graphs i one figure like this (default size is 5.0x3.0 inches)

 .PS 8.0
 x=0;y=3
 copy "figa.pic"
 x=5;y=3
 copy "figb.pic"
 x=0;y=0
 copy "figc.pic"
 x=5;y=0
 copy "figd.pic"
 .PE

This will produce an 8 inches wide figure with four graphs in two rows on top of each other

One can also achieve the same thing by the command

 set term pic x y

For example, using

 .PS 6.0
 copy "trig.pic"
 .PE

hpljii

The HP LaserJet II and HP DeskJet drivers have a single option.

Syntax:
 set terminal hpljii {<resolution>}
 set terminal hpdj {<resolution>}

where <resolution> is the resolution of the output in dots per inch. It must be 75, 100, 150
or 300.    Note: there must be enough memory available to rasterize at the higher
resolutions.

Example:
 set terminal hpljii 150

latex

The LaTeX and EMTeX driver allows one to specify a font type and a font size for the labels
around a gnuplot graph.

Options are: Fonts:
 default (Roman 10 point)
 courier
 roman

at any size you specify. (BEWARE METAFONT will not like odd sizes.) eg.
 gnuplot> set term latex courier 5

Unless your driver is capable of building fonts at any size (e.g. dvips), stick to the standard
10, 11 and 12 point size.

iris4d

The iris4d driver can operate in two modes.

Syntax:
 set terminal iris4d {24}

If the hardware supports only 8 bits, use the default set terminal iris4d. If, however, the
hardware supports 24 bits (8 per red/green/blue), use set terminal iris4d 24.

When using 24-bit mode, the colors can be directly specified via the file .gnuplot_iris4d that
is searched in the current directory and then in the home directory specified by the HOME
environment variable. This file holds RGB values for the background, border, labels and nine
plotting colors, in that order. For example, here is a file containing the default colors:

 85 85 85 /* Back Ground */
 0 0 0 /* Boundary */
 170 0 170 /* Labeling */
 85 255 255 /* Plot Color 1 */
 170 0 0 /* Plot Color 2 */
 0 170 0 /* Plot Color 3 */
 255 85 255 /* Plot Color 4 */
 255 255 85 /* Plot Color 5 */
 255 85 85 /* Plot Color 6 */
 85 255 85 /* Plot Color 7 */
 0 170 170 /* Plot Color 8 */
 170 170 0 /* Plot Color 9 */

This file has exactly 12 lines of RGB triples. No empty lines are allowed and anything after
the third number in line is ignored.

mf

The mf terminal driver creates a input file to the MetaFont program. Thus a figure may be
used in the TeX document in the same way as a character is.

To use the plot in a document the MetaFont program must be run with the output file from
GnuPlot as input. Thus, the user needs a basic knowledge of the font creating process and
inclusion of a new font in a document. However, if the Metafont program is set up properly
at the local site an unexperienced user could perform the operation without much trouble.

The text support is based on a MetaFont character set. Currently the Computer Modern
Roman font set is input but the user are in principal free to chose whatever fonts he/she
needs. The MetaFont source files for the chosen font must be available. Each character is
stored in a separate picture variable in MetaFont. These variables may be manipulated
(rotated, scaled etc.) when characters are needed. The drawback is the interpretation time
in the MetaFont program. On some machines (i.e. PC) the limited amount of memory
available may also cause problem if too many pictures are stored.

Metafont Instructions

Metafont Instructions

- Set your terminal to metafont:
 set terminal mf
- Select an output-file, e.g.:
 set output "myfigures.mf"
- Do your plots. Each plot will generate a separate character. Its default size will be 5*3
inches. You can change the size by saying set size 0.5,0.5 or whatever fraction of the default
size you want to have.

- Quit gnuplot.

- Generate a tfm- and gf-file by running metafont on the output of gnuplot. Since the plot is
quite large (5*3 in), you will have to use a version of metafont that has a value of at least
150000 for memmax. On Unix-systems these are conventionally installed under the name
bigmf. For the following assume that the command virmf stands for a big version of
metafont. For example:

- Invoke metafont:
 virmf '&plain'
- Select the output device: At the metafont prompt ('*') type:
 \mode:=CanonCX; % or whatever printer you use
- Optionally select a magnification:
 mag:=1; % or whatever you wish
- Input the gnuplot-file:
 input myfigures.mf
On a typical Unix machine there will usually be a script called mf that executes virmf
'&plain', so you probably can substitute mf for virmf &plain. This will generate two files:
mfput.tfm and mfput.$$$gf (where $$$ indicates the resolution of your device). The above
can be conveniently achieved by typing everything on the command line, e.g.: virmf '&plain'
'\mode:=CanonCX; mag:=1; input myfigures.mf' In this case the output files will be named
myfigures.tfm and myfigures.300gf.

- Generate a pk-file from the gf-file using gftopk:
 gftopk myfigures.300gf myfigures.300pk
The name of the output-file for gftopk depends on the dvi-driver you use. Ask your local TeX-
administrator about the naming conventions. Next, either install the tfm- and pk-files in the
appropriate directories, or set your environment-variables properly. Usually this involves
setting TEXFONTS to include the current directory and do the same thing for the
environment-variable that your dvi-driver uses (no standard name here...). This step is
necessary so that TeX will find the font-metric file and your dvi-driver will find the pk-file.

- To include your plots in your document you have to tell TeX the font:
 \font\gnufigs=myfigures
Each plot you made is stored in a single character. The first plot is character 0, the second is
character 1, and so on... After doing the above step you can use the plots just like any other
characters. Therefore, to place plots 1 and 2 centered in your document, all you have to do
is:
 \centerline{\gnufigs\char0}
 \centerline{\gnufigs\char1}
in plain TeX. For LaTeX you can, of course, use the picture environment and place the plot
according to your wishes using the \makebox and \put macros.

It saves you a lot of time, once you have generated the font, since TeX handles the plots as

characters and uses minimal time to place them. Also the documents you make change
more often, than the plots do. Also it saves a lot of TeX-memory. One last advantage of using
the metafont-driver is that the dvi-file really remains device independent, because no \
special-commands are used as in the eepic- and tpic-drivers.

mif

Several options may be set in the MIF 3.00 driver.

Syntax:
 set terminal mif {<pentype>} {<curvetype>} {<help>}

<pentype> selects "colour" of the graphics.
 `colour` plot lines with line types >= 0 in colour (MIF sep. 2-7).
 `monochrome` plot all line types in black (MIF sep. 0).
<curvetype> selects how "curves" are plotted.
 `polyline` plot curves as continuous curves.
 `vectors` plot curves as collections of vectors
<help> print online help on standard error output.
 `help` print a short description of the usage, and the options
 `?` print a short description of the usage

This terminal driver produces Frame Maker MIF format version 3.00. It plots in MIF Frames
with the size 15*10 [cm], and plot primitives with the same pen will be grouped in the same
MIF group. Plot primitives in a gnuplot plot will be plotted in a MIF Frame, and several MIF
Frames are collected in one large MIF Frame. Plot primitives with line types >= 0 will as
default be drawn in colour. As default curves are plotted as continuous lines. The MIF font
used for text is "Times".

Examples:

 set term mif
 set term mif vectors
 set term mif help

nec-cp6

One option may be set in the nec-cp6 driver.    The resolution of this driver is 400x320.

Syntax:
 set terminal nec-cp6 monochrome
 set terminal nec-cp6 color
 set terminal nec-cp6 draft

pbm

Several options may be set in the PBMplus driver.

Syntax:
 set terminal pbm {<fontsize>} {<colormode>}

where <fontsize> is small, medium, or large and <colormode> is monochrome, gray or
color. Default size is 640 pixels wide and 480 pixels high. The output for monochrome is a
portable bitmap (one bit per pixel). The output for gray is a portable graymap (three bits per
pixel). The output for color is a portable pixmap (color, four bits per pixel). The output of
these drivers can be used with Jef Poskanzer's excellent PBMPLUS package which provides
programs to convert the above PBMPLUS formats to GIF, TIFF, MacPaint, Macintosh PICT,
PCX, X11 bitmap and many others.

Examples:

 set term pbm small
 set size 2,2
 set term pbm color medium

pcl5

Three options may be set in the pcl5 driver.    The driver actually uses HPGL-2 but there is a
name conflict among the terminal devices.

Syntax:
 set terminal pcl5 {<mode>} {} {<fontsize>}

where <mode> is landscape, or portrait, is stick, univers, or cg_times, and
fontsize is the size in points.
 set terminal pcl5 landscape

postscript

Several options may be set in the PostScript driver.

Syntax:
 set terminal postscript {<mode>} {<color>} {<dashed>}
 {"<fontname>"} {<fontsize>}

where <mode> is landscape, portrait, eps or default. Selecting default sets all options to
their defaults. <color> is either color or monochrome. <dashed> is either solid or
dashed. "<fontname>" is the name of a valid PostScript font. <fontsize> is the size of the
font in PostScript points. Defaults are landscape, monochrome, dashed, "Helvetica", and
14pt. Default size of PostScript plot is landscape mode 10 inches wide and 7 inches high.

To get EPS output, use the eps mode and make only one plot per file. In eps mode the
whole plot is halved in size; the fonts are half the given size, and the plot is 5 inches wide
and 3.5 inches high.

Examples:

 set term postscript default # old postscript
 set term postscript landscape 22 # old psbig
 set term postscript eps 14 # old epsf1
 set term postscript eps 22 # old epsf2
 set size 0.7,1.4
 set term post portrait color "Times-Roman" 14

regis

The regis terminal device has the option of using 4 or 16 colors.    The default is 4.    For
example:
 set term regis 16

table

Instead of producing a picture, term type table prints out the evaluation results in a
multicolumn ASCII table of X Y Z values. For those times when you really want to see the
numbers, now you can see them on the screen or save to a file.

windows

Three options may be set in the windows driver.

Syntax:
 set terminal windows {<color>} {"<fontname>"} {<fontsize>}

<color> is either color or monochrome. "<fontname>" is the name of a valid Windows
font. <fontsize> is the size of the font in points.

graph-menu
printing
text-menu
wgnuplot.ini
windows3.0

graph-menu

The gnuplot graph window has the following options on a pop up menu accessed by
pressing the right mouse button or selecting Options from the system menu:

Bring to Top when checked brings the graph window to the top after every plot.

Color when checked enables color linestyles. When unchecked it forces monochrome
linestyles.

Copy to Clipboard copies a bitmap and a Metafile picture.

Background... sets the window background color.

Choose Font... selects the font used in the graphics window.

Line Styles... allows customization of the line colors and styles.

Print... prints the graphics windows using a Windows printer driver and allows selection of
the printer and scaling of the output. The output produced by Print is not as good as that
from gnuplot's own printer drivers.

Update wgnuplot.ini saves the current window locations, window sizes, text window font,
text window font size, graph window font, graph window font size, background color and
linestyles to the initialisation file WGNUPLOT.INI.

printing

In order of preference, graphs may be be printed in the following ways.

1. Use the gnuplot command set terminal to select a printer and set output to redirect
output to a file.

2. Select the Print... command from the gnuplot graph window. An extra command
screendump does this from the text window.

3. If set output "PRN" is used, output will go to a temporary file. When you exit from
gnuplot or when you change the output with another set output command, a dialog box will
appear for you to select a printer port.    If you choose OK, the output will be printed on the
selected port, passing unmodified through the print manager.    It is possible to accidently (or
deliberately) send printer output meant for one printer to an incompatible printer.

text-menu

The gnuplot text window has the following options on a pop up menu accessed by pressing
the right mouse button or selecting Options from the system menu:

Copy to Clipboard copies marked text to the clipboard.

Paste copies text from the clipboard as if typed by the user.

Choose Font... selects the font used in the text window.

System Colors when selected makes the text window honor the System Colors set using
the Control Panel.    When unselected, text is black or blue on a white background.

Update wgnuplot.ini saves the current text window location, text window size, text
window font and text window font size to the initialisation file WGNUPLOT.INI.

MENU BAR

If the menu file WGNUPLOT.MNU is found in the same directory as WGNUPLOT.EXE, then
the menu specified in WGNUPLOT.MNU will be loaded.

Menu commands are:
 [Menu] Start a new menu with the name on the following line
 [EndMenu] End current menu.
 -- Insert a horizontal menu separator
 | Insert a vertical menu separator
 [Button] Put next macro on a push button instead of a menu.

Macros take two lines with the macro name (menu entry) on the first line and the macro on
the second line.    Leading spaces are ignored.

Macros commands are:
 [INPUT] Input string with prompt terminated by [EOS] or {ENTER}
 [EOS] End Of String terminator. Generates no output.
 [OPEN] Get name of file to open from list box, with title of
 list box terminated by [EOS], followed by default
 filename terminated by [EOS] or {ENTER}
 This uses COMMDLG.DLL from Windows 3.1.
 [SAVE] Get name of file to save. Similar to [OPEN]

Macros character substitutions are:
 {ENTER} Carriage Return '\r'
 {TAB} Tab '\011'
 {ESC} Escape '\033'
 {^A} '\001'
 ...
 {^_} '\031'

Macros are limited to 256 characters after expansion.

wgnuplot.ini

Windows gnuplot will read some of its options from the [WGNUPLOT] section of
WGNUPLOT.INI in the Windows directory. An example WGNUPLOT.INI file is shown below.
 [WGNUPLOT]
 TextOrigin=0 0
 TextSize=640 150
 TextFont=Terminal,9
 GraphOrigin=0 150
 GraphSize=640 330
 GraphFont=Arial,10
 GraphColor=1
 GraphToTop=1
 GraphBackground=255 255 255
 Border=0 0 0 0 0
 Axis=192 192 192 2 2
 Line1=0 0 255 0 0
 Line2=0 255 0 0 1
 Line3=255 0 0 0 2
 Line4=255 0 255 0 3
 Line5=0 0 128 0 4
The GraphFont entry specifies the font name and size in points. The 5 numbers given in the
Border, Axis and Line entries are the Red intensity (0-255), Green intensity, Blue
intensity, Color Linestyle and Mono Linestyle. Linestyles are 0=SOLID, 1=DASH,
2=DOT, 3=DASHDOT, 4=DASHDOTDOT. In the example WGNUPLOT.INI file above, Line 2 is
a green solid line in color mode, or a dashed line in monochrome mode. The default line
width is 1 pixel.    If Linestyle is negative it specifies the width of a SOLID line in pixels.
Line1 and any linestyle used with the points style must be SOLID with unit width.

windows3.0

Windows 3.1 is preferred, but WGNUPLOT will run under Windows 3.0 with the following
restrictions:

1. COMMDLG.DLL and SHELL.DLL (available with Windows 3.1 or Borland C++ 3.1) must be
in the windows directory.

2. WGNUPLOT.HLP produced by Borland C++ 3.1 is in Windows 3.1 format. You need to use
the WINHELP.EXE supplied with Borland C++ 3.1.

3. It won't run in real mode due to lack of memory.

4. Truetype fonts are not available in the graph window.

5. Drag-drop does not work.

tics

By default, tics are drawn inwards from the border on all four sides. The set tics command
can be used to change the tics to be drawn outwards on the left and bottom borders only.
This is useful when doing impulse plots.

Syntax:
 set tics {<direction>}
 show tics

where <direction> may be in or out. set tics defaults to in.

See also the set xtics, set ytics, and set ztics command for more control of tic marks. KUsing
splot, in 3-d plots, one can adjust the relative height of the vertical (Z) axis using set
ticslevel. The numeric argument provided specifies the location of the bottom of the scale.
a zero will put it on the bottom grid and any positive number somewhere along the z axis.

Syntax:
 set ticslevel {<level>}
 show tics

where <level> is a non negative numeric argument. For example,

 set ticslevel 0.5

sets the tics level to the default value.

See also the set view.

time

The optional set time places the time and date of the plot either at the top or bottom of the
left margin. The exact location is device dependent.

Syntax:
 set time {<xoff>}{,<yoff>}
 set notime
 show time

Specifying constants <xoff> or <yoff> as optional offsets for the time will move the time
<xoff> or <yoff> character screen coordinates. For example,

 set time ,-3

will change only the y offset of the time, moving the title down by roughly the height of
three characters.

title

The set title command produces a plot title that is centered at the top of the plot. Using the
optional x,y screen offsets, the title can be placed anywhere on the plot. set title with no
parameters clears the title.

Syntax:
 set title {"<title-text>"} {<xoff>}{,<yoff>}
 show title

Specifying constants <xoff> or <yoff> as optional offsets for the title will move the title
<xoff> or <yoff> character screen coordinates. Note these are screen coordinates and not
plot coordinates. For example,

 set title ,-1

will change only the y offset of the title, moving the title down by roughly the height of one
character.

(The EEPIC, Imagen, LaTeX, and TPIC drivers allow \\ in a string to specify a newline.)

trange

The set trange command sets the parametric range used to compute x and y values when
in parametric mode. If not in parametric mode (see set parametric) then this range is not
used. This command does not affect x/y autoscaling or x/y ranges.

This range may also be specified on the plot command line when in parametric mode.

Syntax:
 set trange [{<tmin> : <tmax>}]

where <tmin> and <tmax> terms are constants or expressions.

Both the <tmin> and <tmax> terms are optional. Anything omitted will not be changed, so
 set trange [:10]
changes tmax to 10 without affecting tmin.    See also set urange and set parametric.

urange

The set urange and set vrange commands sets the parametric ranges used to compute x,
y, and z values when in splot parametric mode. If not in parametric mode (see set
parametric) then these ranges are not used. This command does not affect x/y autoscaling
or x/y ranges.

This range may also be specified on the splot command line when in parametric mode.    See
plot for more information

Syntax:
 set urange [{<umin> : <umax>}]

where <umin> and <umax> terms are constants or expressions.

Both the <umin> and <umax> terms are optional. Anything omitted will not be changed, so
 set urange [:10]
changes umax to 10 without affecting umin.    See also set trange.

variables

The show variables command lists all user-defined variables and their values.

Syntax:
 show variables

view

The set view command sets the view point for splots. This command controls the way the
3-d coordinates of the plot are mapped into the 2-d screen space. This command provides
controls to both rotation and scaling of the plotted data but supports orthographic
projections only.

Syntax:
 set view <rot_x> {,{<rot_z>}{,{<scale>}{,<scale_z>}}}
 show view

where <rot_x> and <rot_z> control the rotation angles (in degrees) along a virtual 3-d
coordinate system aligned with the screen such that the screen horizontal axis is x, screen
vertical axis is y, and the axis perpendicular to the screen is z. <rot_x> is bounded to the
[0:180] range with a default of 60 degrees, while <rot_z> is bounded to the [0:360] range
with a default of 30 degrees. <scale> controls the scaling of the entire splot, while
<scale_z> scales the z axis only. Both scales default to 1.0.

Examples:
 set view 60, 30, 1, 1
 set view ,,0.5

The first sets all the four default values. The second changes only scale, to 0.5.

See also set ticslevel.

vrange

The set vrange command is similar to the set urange command. Please see set urange.

xlabel

The set xlabel command sets the x-axis label that is centered along the x axis. Using the
optional x,y screen offsets, the label can be placed anywhere on the plot. set xlabel with no
parameters clears the label.

Syntax:
 set xlabel {"<label>"} {<xoff>}{,<yoff>}
 show xlabel

Specifying constants <xoff> or <yoff> as optional offsets for the label will move the label
<xoff> or <yoff> character screen coordinates. For example,

 set xlabel -1

will change only the x offset of the xlabel, moving the label roughly one character width to
the left.

(The EEPIC, Imagen, LaTeX, and TPIC drivers allow \\ in a string to specify a newline.)

xrange

The set xrange command sets the horizontal range that will be displayed. This command
turns x axis autoscaling off.

This range may also be specified on the plot command line.

Syntax:
 set xrange [{<xmin> : <xmax>}]

where <xmin> and <xmax> terms are constants or expressions.

Both the <xmin> and <xmax> terms are optional. Anything omitted will not be changed, so
 set xrange [:10]
changes xmax to 10 without affecting xmin.

xtics

Fine control of the x axis tic marks is possible with the set xtics command. The x-axis tic
marks may be turned off with the set noxtics command. They may be turned on (the
default state) with set xtics.

Syntax:
 set xtics { {<start>, <incr>{, <end>}} |
 {({"<label>"} <pos> {, {"<label>"} <pos>}...)} }
 set noxtics
 show xtics

The <start>, <incr>, <end> form specifies that a series of tics will be plotted on the x axis
between the x values <start> and <end> with an increment of <incr>. If <end> is not
given it is assumed to be infinity. The increment may be negative. For example,
 set xtics 0,.5,10
makes tics at 0, 0.5, 1, 1.5, ..., 9.5, 10.

The ("<label>" <pos>, ...) form allows arbitrary tic positions or non-numeric tic labels. A set
of tics are a set of positions, each with its own optional label. Note that the label is a string
enclosed by quotes, and may be a constant string, such as "hello", or contain formatting
information for the tic number (which is the same as the position), such as "%3f clients". See
set format for more information about this case. The label may even be empty. Examples:
 set xtics ("low" 0, "medium" 50, "high" 100)
 set xtics (1,2,4,8,16,32,64,128,256,512,1024)
 set xtics ("bottom" 0, "" 10, "top" 20)

Tics will only be plotted when in range.

The set ytics and set noytics commands work identically. See also the set format command.

xdtics

The set xdtics commands converts the x axis tic marks to days of the week where 0=Sun
and 6=Sat.    Overflows are converted modulo 7 to dates.

Examples:
 set xdtics

Sets x axis tics in days.

The set ydtics set zdtics and set noydtics set nozdtics commands work identically. See also
the set format command.

xmtics

The set xmtics commands converts the x axis tic marks to months of the years where
1=Jan and 12=Dec.    Overflows are converted modulo 12 to months.

Examples:
 set xmtics

Sets x axis tics into months.

The set ymtics set zmtics and set noymtics set nozmtics commands work identically. See
also the set format command.

xzeroaxis

set xzeroaxis draws the x-axis. By default, this option is on. set noxzeroaxis causes
GNUPLOT to omit the x-axis.

Syntax:
 set xzeroaxis
 set noxzeroaxis
 show xzeroaxis

ylabel

The set ylabel command sets the y-axis label.    The position of this label depends on the
terminal, and can be one of the following three positions (the position can be adjusted with
optional parameters).

1. Horizontal text flushed left at the top left of the plot. Terminals that cannot rotate text will
probably use this method.

2. Vertical text centered vertically at the left of the plot. Terminals that can rotate text will
probably use this method.

3. Horizontal text centered vertically at the left of the plot. The EEPIC, LaTeX and TPIC drivers
use this method. The user must insert line breaks using \\ to prevent the ylabel from
overwriting the plot. To produce a vertical row of characters, add \\ between every printing
character (but this is ugly).

Syntax:
 set ylabel {"<label>"} {<xoff>}{,<yoff>}
 show ylabel

With no parameters, the label is cleared. Specifying constants <xoff> or <yoff> as optional
offsets for the label will move the label <xoff> or <yoff> character screen coordinates. For
example,

 set ylabel -1

will change only the x offset of the ylabel, moving the label roughly one character width left
of its default position. This is especially useful with the LaTeX driver.

(The EEPIC, Imagen, LaTeX, and TPIC drivers allow \\ in a string to specify a newline.)

yrange

The set yrange command sets the vertical range that will be displayed. This command
turns y axis autoscaling off.

This range may also be specified on the plot command line.

Syntax:
 set yrange [{<ymin> : <ymax>}]

where <ymin> and <ymax> terms are constants or expressions.

Both the <ymin> and <ymax> terms are optional. Anything omitted will not be changed, so
 set yrange [:10]
changes ymax to 10 without affecting ymin.

ytics

The set ytics and set noytics commands are similar to the set xtics and set noxtics
commands. Please see set xtics.

ydtics

The set ydtics and set noydtics commands are similar to the set xdtics and set noxdtics
commands. Please see set xdtics.

ymtics

The set ymtics and set noymtics commands are similar to the set xmtics and set noxmtics
commands. Please see set xmtics.

yzeroaxis

set yzeroaxis draws the y-axis. By default, this option is on. set noyzeroaxis causes
GNUPLOT to omit the y-axis.

Syntax:
 set yzeroaxis
 set noyzeroaxis
 show yzeroaxis

zero

The zero value is the default threshold for values approaching 0.0. GNUPLOT will not plot a
point if its imaginary part is greater in magnitude than the zero threshold. Axis ranges
cannot be less than zero. The default zero value is 1e-8. This can be changed with the set
zero command.

Syntax:
 set zero <expression>
 show zero

zeroaxis

set zeroaxis draws the x-axis and y-axis. By default, this option is on.    set nozeroaxis
causes GNUPLOT to omit the axes, and is equivalent to set noxzeroaxis; set noyzeroaxis.

Syntax:
 set zeroaxis
 set nozeroaxis
 show zeroaxis
See set xzeroaxis and set yzeroaxis.

zlabel

The set zlabel command sets the z-axis label that is centered along the z axis. Using the
optional x,y screen offsets, the label can be placed anywhere on the plot. set zlabel with no
parameters clears the label.

Syntax:
 set zlabel {"<label>"} {<xoff>}{,<yoff>}
 show zlabel

Specifying constants <xoff> or <yoff> as optional offsets for the label will move the label
<xoff> or <yoff> character screen coordinates. For example,

 set zlabel ,1

will change only the y offset of the zlabel, moving the label roughly one character height up.

The zlabel will be drawn whenever surfaces or contours are plotted, in the space above the
grid level.

(The EEPIC, Imagen, LaTeX, and TPIC drivers allow \\ in a string to specify a newline.)

zrange

The set zrange command sets the vertical range that will be displayed. This command
turns z axis autoscaling off.    The zrange is used only by splot and is ignored by plot.

This range may also be specified on the splot command line.

Syntax:
 set zrange [{<zmin> : <zmax>}]

where <zmin> and <zmax> terms are constants or expressions.

Both the <zmin> and <zmax> terms are optional. Anything omitted will not be changed, so
 set zrange [2:]
changes zmin to 2 without affecting zmax.

ztics

The set ztics and set noztics commands are similar to the set xtics and set noxtics
commands. Please see set xtics.

zdtics

The set zdtics and set nozdtics commands are similar to the set xdtics and set noxdtics
commands. Please see set xdtics.

zmtics

The set zmtics and set nozmtics commands are similar to the set xmtics and set noxmtics
commands. Please see set xmtics.

shell

The shell command spawns an interactive shell. To return to GNUPLOT, type logout if using
VMS, exit or the END-OF-FILE character if using Unix, endcli if using AmigaDOS, or exit if
using MS-DOS or OS/2.

A single shell command may be spawned by preceding it with the ! character ($ if using
VMS) at the beginning of a command line. Control will return immediately to GNUPLOT after
this command is executed. For example, in VMS, AmigaDOS, MS-DOS or OS/2,

 ! dir

prints a directory listing and then returns to GNUPLOT.

On an Atari, the ! command first checks whether a shell is already loaded and uses it, if
available. This is practical if GNUPLOT is run from gulam, for example.

splot

Three-dimensional surface and contour plotting is available in GNUPLOT with the splot
command. See the plot command for features common to the plot command.

See also set contour, set cntrparam, and set surface.

Binary Data

Binary Data

Gnuplot will dynamically determine if a datafile is ASCII or binary.    ASCII data files are
discussed in the plot section. For three dimensions, single precision floats are stored as
follows:

 <ncols> <x0> <x1> <x2> ...
 <y0> <z0,0> <z0,1> <z0,2> ...
 <y1> <z1,0> <z1,1> <z1,2> ...

which is converted into triplet:

 <x0> <y0> <z0,0>
 <x0> <y1> <z0,1>
 <x0> <y2> <z0,2>

 <x1> <y0> <z1,0>
 <x1> <y1> <z1,1>
 <x1> <y2> <z1,2>

These triplets are then converted into gnuplot iso_curves and then uses gnuplot to do the
rest of the plotting.

A collection of matrix and vector manipulation routines (in C) are provided in gnubin.c.   
The routine to write binary data is

 int fwrite_matrix(file,m,nrl,nrl,ncl,nch,row_title,column_title)

An example of using these routines is provided in the file bf_test.c. The corresponding
demo file is demo/binary.dem.

start-up

When GNUPLOT is run, it looks for an initialization file to load. This file is called .gnuplot on
Unix and AmigaDOS systems, and GNUPLOT.INI on other systems. If this file is not found in
the current directory, the program will look for it in the home directory (under AmigaDOS,
AtariTOS, MS-DOS and OS/2, the environment variable GNUPLOT should contain the name of
this directory).    Note: if NOCWDRC is defined during the installation, GNUPLOT will not read
from the current directory.

If this file is found, GNUPLOT executes the commands in this file. This is most useful for
setting the terminal type and defining any functions or variables that are used often.

substitution

Command-line substitution is specified by a system command enclosed in backquotes. This
command is spawned and the output it produces replaces the name of the command (and
backquotes) on the command line.

Newlines in the output produced by the spawned command are replaced with blanks.

Command-line substitution can be used anywhere on the GNUPLOT command line.

Example:

This will run the program leastsq and replace leastsq (including backquotes) on the
command line with its output:

 f(x) = `leastsq`

or, in VMS

 f(x) = `run leastsq`

user-defined

New user-defined variables and functions of one through five variables may be declared and
used anywhere.

User-defined function syntax:
 <function-name> (<dummy1> {,<dummy2> {, ...} }) = <expression>

where <expression> is defined in terms of <dummy1> through <dummy5>.

User-defined variable syntax:
 <variable-name> = <constant-expression>

Examples:
 w = 2
 q = floor(tan(pi/2 - 0.1))
 f(x) = sin(w*x)
 sinc(x) = sin(pi*x)/(pi*x)
 delta(t) = (t == 0)
 ramp(t) = (t > 0) ? t : 0
 min(a,b) = (a < b) ? a : b
 comb(n,k) = n!/(k!*(n-k)!)
 len3d(x,y,z) = sqrt(x*x+y*y+z*z)

Note that the variable pi is already defined.

See show functions and show variables.

bugs

The bessel functions do not work for complex arguments.

The gamma function does not work for complex arguments.

There is a bug in the stdio library for old Sun operating systems (SunOS Sys4-3.2). The "%g"
format for 'printf' sometimes incorrectly prints numbers (e.g., 200000.0 as "2"). Thus, tic
mark labels may be incorrect on a Sun4 version of GNUPLOT. A work-around is to rescale the
data or use the set format command to change the tic mark format to "%7.0f" or some other
appropriate format. This appears to have been fixed in SunOS 4.0.

Another bug: On a Sun3 under SunOS 4.0, and on Sun4's under Sys4-3.2 and SunOS 4.0, the
'sscanf' routine incorrectly parses "00 12" with the format "%f %f" and reads 0 and 0 instead
of 0 and 12. This affects data input. If the data file contains x coordinates that are zero but
are specified like '00', '000', etc, then you will read the wrong y values. Check any data files
or upgrade the SunOS. It appears to have been fixed in SunOS 4.1.1.

Microsoft C 5.1 has a nasty bug associated with the %g format for printf. When any of the
formats "%.2g", "%.1g", "%.0g", "%.g" are used, printf will incorrectly print numbers in the
range 1e-4 to 1e-1. Numbers that should be printed in the %e format are incorrectly printed
in the %f format, with the wrong number of zeros after the decimal point.

To work around this problem, use the %e or %f formats explicitly.

GNUPLOT, when compiled with Microsoft C, did not work correctly on two VGA displays that
were tested. The CGA, EGA and VGA drivers should probably be rewritten to use the
Microsoft C graphics library. GNUPLOT compiled with Borland C++ uses the Turbo C graphics
drivers and does work correctly with VGA displays.

VAX/VMS 4.7 C compiler release 2.4 also has a poorly implemented %g format for printf. The
numbers are printed numerically correct, but may not be in the requested format. The K&R
second edition says that for the %g format, %e is used if the exponent is less than -4 or
greater than or equal to the precision. The VAX uses %e format if the exponent is less than -
1. The VAX appears to take no notice of the precision when deciding whether to use %e or
%f for numbers less than 1. To work around this problem, use the %e or %f formats explicitly.
From the VAX C 2.4 release notes: e,E,f,F,g,G    Result will always contain a decimal    point.
For g and G, trailing zeros will not be removed from the result.

VAX/VMS 5.2 C compiler release 3.0 has a slightly better implemented %g format than
release 2.4, but not much. Trailing decimal points are now removed, but trailing zeros are
still not removed from %g numbers in exponential format.

ULTRIX X11R3 has a bug that causes the X11 driver to display "every other" plot.    The bug
seems to be fixed in DEC's release of X11R4 so newer releases of ULTRIX don't seem to have
the problem.    Solutions for older sites include upgrading the X11 libraries (from DEC or
direct from MIT) or defining ULTRIX_KLUDGE when compiling the x11.trm file.    Note that the
kludge is not an ideal fix, however.

The constant HUGE was incorrectly defined in the NeXT OS 2.0 operating system.    HUGE
should be set to 1e38 in plot.h. This error has been corrected in the 2.1 version of NeXT OS.

Some older models of HP plotters do not have a page eject command 'PG'. The current HPGL
driver uses this command in HPGL_reset.    This may need to be removed for these plotters.   
The current PCL5 driver uses HPGL/2 for text as well as graphics.    This should be modified to

use scalable PCL fonts.

On the Atari version, it is not possible to send output directly to the printer (using /dev/lp as
output file), since CRs are added to LFs in binary output. As a workaround write the output to
a file and copy it to the printer afterwards using a shell command.

Please report any bugs to bug-gnuplot@dartmouth.edu.

